COURSE INFORMATION

Course Code	AAM 554	Course Name	Advanced Dynamics					
Type of Course	Level of Course	Semester	Language	Theory	Application (Practice)	Laboratory	Local Credits	ECTS
Elective	Graduate	-	English	3	0	0	3	6

Department	: Aerospace Engineering
Prerequisites/Requirements for Admission	: None
Mode of delivery	: Face to face
Course coordinator	: Assoc. Prof. Dr. Çetin ŞENTÜRK
Course lecturer(s)	: Assoc. Prof. Dr. Çetin ŞENTÜRK
Course assistant(s)	: None
Course description/aim	: The aim of this course is to present the dynamics of particles and rigid bodies in more detail by using vectorial and analytical methods.
Course contents	: Vector analysis, curvilinear coordinates, change of coordinates, relative motion analysis, inertial/noninertial frames of reference, moment of inertia tensor, principal axes, Euler's equations of motion, Euler angles, gyroscopic motion, generalized coordinates, degrees of freedom, holonomic/nonholonomic constraints, generalized forces, Hamilton's principle, Lagrange equations of motion, Hamilton's equations of motion.
Recommended optional program components	:-
Attendance	: 70%

<u>Course Learning Outcomes</u>

#	Learning outcome	Teaching Methods/Techniques	Assessment method(s)	
At t	he end of this course; students will be able to:			
1	Apply vector calculus to analyzing the kinematics and kinetics of particles, system of particles, and rigid bodies.	Theoretical Lecture	Exams/Homeworks/Project	
2	Analyze the dependent motion of constrained systems and the kinematics of relative motion.	Theoretical Lecture	Exams/Homeworks/Project	
3	Draw free-body diagrams and write dynamic equations of motion using appropriate coordinate systems.	Theoretical Lecture	Exams/Homeworks/Project	
4	Make use of the energy and momentum methods in solving dynamics problems.	Theoretical Lecture	Exams/Homeworks/Project	
5	Explain the methods of analytical mechanics as represented by Lagrange's and Hamilton's equations.	Theoretical Lecture	Exams/Homeworks/Project	

COURSE INFORMATION

Weekly Detailed Course Content

Wook	Content	Recommended	Time	
WEEK	Content	Resource(s)	(Hours)	
1	General principles: Fundamental Concepts	Textbook and Lecture	3	
-		Notes		
2	Review of Particle Kinematics: Vector Calculus;	Textbook and Lecture	3	
_	Curvilinear Coordinates; General Curvilinear Motion	Notes		
3	Review of Particle Kinematics: Time Derivatives of	Textbook and Lecture	3	
	Moving Vectors; Relative Motion	Notes	5	
4	Review of Particle Kinetics: Newton's Laws of	Textbook and Lecture	3	
	Motion; The Equation of Motion	Notes	5	
5	Review of Particle Kinetics: Energy & Momentum	Textbook and Lecture	3	
5	Methods	Notes	5	
	Dynamics of a System of Particles: Center of Mass			
6	and Its Motion; Linear & Angular Momentum of a	Textbook and Lecture	3	
0	System of Particles; Conservation of Momentum for	Notes	5	
	a System of Particles			
	Rigid Body Dynamics: Coordinate Transformations;	Textbook and Lecture		
7	General Rotations; Euler Angles; Yaw, Pitch, and	Notes	3	
	Roll Angles	Notes		
	Rigid Body Dynamics: Moment of Inertia Tensor;	Textbook and Lecture		
8	Principal Axes; Euler's Equations of Motion /	Notes	6	
	Midterm Exam	10003		
9	Rigid Body Dynamics: Gyroscopic Motion; Torque-	Textbook and Lecture	3	
	Free Motion	Notes	5	
	Analytical Mechanics: Generalized Coordinates;	Taythook and Lastura		
10	Degrees of Freedom; Holonomic/Nonholonomic	Notes	3	
	Constraints	Notes		
11	Analytical Mechanics: Virtual Displacement;	Textbook and Lecture	2	
11	Principle of Virtual Work; Generalized Forces	Notes	5	
	Analytical Mechanics: D'Alembert's Principle;	Taythook and Lasture		
12	Hamilton's Principle; Lagrange's Equations of	Notos	3	
	Motion	Notes		
12	Analytical Mechanics: Lagrange's Equations for	Textbook and Lecture	2	
15	Constrained Systems; Undetermined Multipliers	Notes	5	
14	Analytical Mechanics: Hamilton's Equations of	Textbook and Lecture	2	
14	Motion	Notes	3	
15	Final Exam			
16	Final Exam			

Sources

Course notes/textbooks	 Advanced Engineering Dynamics, J. H. Ginsberg, Cambridge University Press, 1998. Methods of Analytical Dynamics, L. Meirovitch, McGraw-Hill, 1986. Advanced Dynamics, D. T. Greenwood, Cambridge University Press, 2003.
Readings	: None
Supplemental readings	: None
References	: None

COURSE INFORMATION

Evaluation System

Work Placement	Number	Percentage of Grade (%)		
Attendance				
Quizzes				
Homework	4	30		
Laboratory/Practice				
Report(s)				
Graduate Thesis/Project				
Seminar				
Presentation				
Projects				
Midterm exam(s)	1	30		
Others				
Final exam	1	40		
	Total	100		
	60			
	Percentage of final exam	40		
	Total	100		

Workload Calculation

Activity	Number	Time (hours)	Total Workload (hours)
Course Hours	14	3	42
On-line Activity Hours	0	0	0
Individual study	14	8	112
Lab practice	0	0	0
Midterm exam(s)	1	3	3
Final exam	1	3	3
Homework	4	6	24
Presentation	0	0	0
Project	0	0	0
		Total	184
		ECTS Credit (Total/30)	6

Contribution of Learning Outcomes to Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
L01	5	5	5	5	5	5	5	5	5
LO2	5	5	5	5	5	5	5	5	5
LO3	5	5	5	5	5	5	5	5	5
LO4	5	5	5	5	5	5	5	5	5
L05	5	5	5	5	5	5	5	5	5
L06	5	5	5	5	5	5	5	5	5
L07	5	5	5	5	5	5	5	5	5

Contribution Level: 1 Very low, 2 Low, 3 Medium, 4 High, 5 Very High