COURSE INFORMATION

Course Code	AAM 505	Course Name	Advanced Numerical Methods for Engineers					
Type of Course	Level of Course	Semester	Language	Theory	Application (Practice)	Laboratory	Local Credits	ECTS
Elective	Graduate	-	English	3	0	0	3	6

Department	: Aerospace Engineering
Prerequisites/Requirements for Admission	:-
Mode of Delivery	: Face to Face
Course Coordinator	: Assist. Prof. Dr. Ali Uğur SAZAKLIOĞLU
Course Lecturer(s)	: Assist. Prof. Dr. Ali Uğur SAZAKLIOĞLU
Course Assistant(s)	:
Course Description/Aim	: This course is designed to introduce some advanced numerical methods that are applied especially on engineering problems. Moreover, some numerical analysis are carried out by implementing the numerical methods on a software (MATLAB).
Course Contents	: Error analysis, numerical methods for solving nonlinear algebraic equations/systems, curve fitting and interpolations, optimization, numerical integration and differentiation, numerical methods for ordinary/partial differential equations
Recommended Optional Program Components	:
Compulsory Attendance	: 70%

<u>Course Learning Outcomes</u>

#	Learning outcome	Teaching	Assessment method(s)					
#		Methods/Techniques						
At the	At the end of this course; students will be able to:							
1	Solve the nonlinear algebraic equations	Theoretical Lecture,	Exams/Homeworks/Project					
1	and their systems by numerical methods.	Solving Exercises	Exams/Homeworks/Floject					
2 Employ curve fitting and interpolations		Theoretical Lecture,	Exams/Homeworks/Project					
4	Employ curve fitting and interpolations.	Solving Exercises	Exams/Homeworks/Floject					
3	Optimize some mathematical models.	Theoretical Lecture,	Exams/Homeworks/Project					
3	Optimize some mathematical models.	Solving Exercises	Exams/Homeworks/Project					
4	Calculate numerical integration and	Theoretical Lecture,	Exams/Homeworks/Project					
4	differentiation.	Solving Exercises	Exams/ Homeworks/ Project					
5	Analyze the numerical solutions of	Theoretical Lecture,	Evens/Hemeworks/Droiget					
5	ordinary and partial differential equations.	Solving Exercises	Exams/Homeworks/Project					
6	Apply the learned numerical methods on	Theoretical Lecture,	Exame/Lemenser/Project					
0	computer using a software (MATLAB).	Solving Exercises	Exams/Homeworks/Project					

COURSE INFORMATION

Weekly Detailed Course Content

Week	Content	Recommended Resource(s)	Time (Hours)
1	Introduction and Mathematical Background	Textbook/ Lecture Notes	3
2	Nonlinear Algebraic Equations: Bisection, Fixed-Point Iteration, Newton-Raphson, and Secant Methods Nonlinear Algebraic Systems: Fixed-Point, Seidel, Newton Iteration Methods	Textbook/ Lecture Notes	3
3	Linear and Nonlinear Regressions	Textbook/ Lecture Notes	3
4	Newton's, Lagrange's, and Spline Interpolations	Textbook/ Lecture Notes	3
5	Optimization I	Textbook/ Lecture Notes	3
6	Optimization II	Textbook/ Lecture Notes	3
7	Numerical Integration: Simpson's Rules and Boole's Rule Numerical Differentiation	Textbook/ Lecture Notes	3
8	Finite Difference Methods for ODEs / Midterm Exam	Textbook/ Lecture Notes	3
9	Runge-Kutta Methods	Textbook/ Lecture Notes	3
10	Adaptive Runge-Kutta Methods	Textbook/ Lecture Notes	3
11	Finite Difference Methods for Parabolic Equations	Textbook/ Lecture Notes	3
12	Finite Difference Methods for Elliptic Equations	Textbook/ Lecture Notes	3
13	Finite Difference Methods for Hyperbolic Equations	Textbook/ Lecture Notes	3
14	Finite Element Method	Textbook/ Lecture Notes	3
15	Final Exam		
16	Final Exam		

Sources

Course Notes	Numerical Methods for Engineers by S.C. Chapra and R.P. Canale.
/ Textbooks	Numerical Methods Using MATLAB by J.H. Mathews and K.D. Fink.
Supplementa l Readings	

Evaluation System

Work Placement	Number	Percentage of Grade (%)		
Attendance				
Quizzes				
Homework	3	15		
Presentation	1	5		
Laboratory/Practice				
Report(s)				
Graduate Thesis/Project				
Seminar				
Projects	1	10		
Midterm exam(s)	1	30		
Others				
Final exam	1	40		
	Total	100		
	Percentage of semester work	60		
	Percentage of final exam	40		
	Total	100		

COURSE INFORMATION

Workload Calculation

Activity	Number	Time (hours)	Total Work Load (hours)			
Course Hours	14	3	42			
On-line Activity Hours						
Individual study	16	6	96			
Midterm exam(s)	1	2	2			
Final exam	1	2	2			
Homework	3	6	18			
Presentation	1	1	1			
Project	1	20	20			
	Total					
		ECTS Credit (Total/30)	6			

Contribution of Learning Outcomes to Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
L01	5	5	2	5	4	2	3	4	2
LO2	5	5	2	5	4	2	3	4	2
LO3	5	5	2	5	4	2	3	4	2
LO4	5	5	2	5	4	2	3	4	2
LO5	5	5	2	5	4	2	3	4	2
LO6	5	5	2	5	4	2	3	4	2

Contribution Level : 1: "Very low", 2: "Low", 3: "Medium", 4: "High", 5: "Very High" **LO:** Learning Outcome of the Course

PO: Program Outcome