COURSE INFORMATION

Course Code	AAM 521	Course Name	Remote Sensing and Radiation					
Type of Course	Level of Course	Semester	Language	Theory	Application (Practice)	Laboratory	Local Credits	ECTS
Elective	Graduate	-	English	3	0	0	3	6

Department	: Aerospace Engineering
Prerequisites/Requirements	•_
for Admission	
Mode of Delivery	: Face to Face
Course Coordinator	:-
Course Lecturer(s)	:-
Course Assistant(s)	:
Course Description/Aim	: Teaching the basic principles, production and analysis methods of remote sensing and how to use E/M radiation for this purpose. After this course, students will be able to research on the remote sensing and how to use E/M radiation.
Course Contents	: E/M Radiation and remote sensing relation, RADAR working principles, LIDAR working principles, passive sensors, digital image processing techniques.
Recommended Optional	
Program Components	
Compulsory Attendance	: 70%

Course Learning Outcomes

#	Learning outcome	Teaching Methods/Techniques	Assessment method(s)	
At the	end of this course; students will be able to:			
1	Relate E/M Radiation and remote sensing	Theoretical Lecture, Solving Exercises	Exams	
2	Understand RADAR working principles	Theoretical Lecture, Solving Exercises	Exams	
3	Understand LIDAR working principles	Theoretical Lecture, Solving Exercises	Exams	
4	Understand passive sensors	Theoretical Lecture, Solving Exercises	Exams	
5	Understand digital image processing techniques	Theoretical Lecture, Solving Exercises	Exams	

Weekly Detailed Course Content

Week	Content	Recommended Resource(s)	Time (Hours)
1	Introduction	Textbook/ Lecture Notes	3
2	E/M Radiation-1	Textbook/ Lecture Notes	3
3	E/M Radiation-2	Textbook/ Lecture Notes	3
4	RADAR-1	Textbook/ Lecture Notes	3
5	RADAR-2	Textbook/ Lecture Notes	3

COURSE INFORMATION

6	RADAR-3	Textbook/ Lecture Notes	3
0	KADAR-3	Textbook/ Lecture Notes	3
7	LIDAR-1	Textbook/ Lecture Notes	3
8	Midterm Exam / LIDAR-2	Textbook/ Lecture Notes	3
9	Passive Thermal Sensors-1	Textbook/ Lecture Notes	3
10	Passive Thermal Sensors-2	Textbook/ Lecture Notes	3
11	Satellites	Textbook/ Lecture Notes	3
12	Digital Image Processing-1	Textbook/ Lecture Notes	3
13	Digital Image Processing-2	Textbook/ Lecture Notes	3
14	GIS	Textbook/ Lecture Notes	3
15	Final Exam		3
16	Final Exam		3

Sources

Course	Lecture notes and slides
Notes /	Remote Sensing Imagery Edited by Florence Tupin Jordi Inglada Jean-Marie Nicola -
Textbooks	Wiley.
	Remote Sensing, Siamak Khorram, Frank H. Koch, Cynthia F. van der Wiele, Stacy A. C.
Supplement	Nelson, Springer
al Readings	Introduction to the Physics and Techniques of Remote Sensing, Charles Elachi, Jakob van
_	Zy, Wiley

Evaluation System

Work Placement	Number	Percentage of Grade (%)
Attendance		
Quizzes	8	30
Homework		
Presentation		
Laboratory/Practice		
Report(s)		
Graduate Thesis/Project		
Seminar		
Projects		
Midterm exam(s)	1	30
Others		
Final exam	1	40
	Total	100
	Percentage of semester work	60
	Percentage of final exam	40
	Total	100

Workload Calculation

Activity	Number	Time (hours)	Total Workload (hours)
Course Hours	14	3	42
On-line Activity Hours			
Individual study	16	8	128
Midterm exam(s)	1	2	2

COURSE INFORMATION

Final exam	1	3	3			
Homework						
Presentation						
Project						
		Total	175			
		ECTS Credit (Total/30)	6			

Contribution of Learning Outcomes to Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
L01	5	5	3	3	4	3	2	5	2
LO2	5	5	3	3	4	3	2	5	2
LO3	5	5	3	3	4	3	2	5	2
LO4	5	5	3	3	4	3	2	5	2
LO5	5	5	3	3	4	3	2	5	2

Contribution Level : 1: "Very low", 2: "Low", 3: "Medium", 4: "High", 5: "Very High" **LO:** Learning Outcome of the Course

PO: Program Outcome