COURSE INFORMATION

Course Code	AAM 545	Course Name	Advanced Heat and Mass Transfer					
Type of Course	Level of Course	Semester	Language Theory		Application (Practice)	Laboratory	Local Credits	ECTS
Elective	Graduate	-	English	3	0	0	3	6

Department	: Aerospace Engineering
Prerequisites/Requirements for Admission	: None
Mode of delivery	: Face to face
Course coordinator	: Asst. Prof. Dr Mohamed Salem ELMNEFI
Course lecturer(s)	: Asst. Prof. Dr Mohamed Salem ELMNEFI
Course assistant(s)	: None
Course description/aim	: This course is aimed at graduate engineers and scientists with the view of deepening their understanding of basic mechanisms controlling heat, mass and momentum transfer processes. Following a presentation of classical theories and analytical solutions for specific heat and mass transfer problems, the course will aim to show how modern computational techniques can be applied to obtain solutions to more general problems.
Course contents	Steady state heat conduction with heat generation, transient heat conduction, extended surfaces, radiant heat transfer, equations of motions of compressible flow, viscous fluid, turbulent boundary layer theory, incompressible laminar flow, heat transfer through a laminar boundary layer. Incompressible turbulent, heat and mass transfer through a turbulent boundary layer, and mass transfer in laminar and turbulent flow.
Recommended optional	
program components	
Attendance	: 70%

Course Learning Outcomes

#	Learning outcome	Teaching Methods/Techniques	Assessment method(s)	
At t	he end of this course; students will be able to:			
1	Identify previous heat and mass transfer research and apply tools and techniques for to engineering research and development programs.	Theoretical Lecture	Exams/Homeworks/Project	
2	Clarify the significance of the various terms appearing in the governing equations.	Theoretical Lecture	Exams/Homeworks/Project	
3	Present the concepts of boundary layer and separation.	Theoretical Lecture	Exams/Homeworks/Project	
4	Broaden the understanding of the role of fins on heat transfer surfaces.	Theoretical Lecture	Exams/Homeworks/Project	
5	Expand the treatment of radiation problems to encompass absorbing and introduce a wider range of network and computational schemes for solution of radiation problems.	Theoretical Lecture	Exams/Homeworks/Project	
6	Determine the steady state and transient temperature distribution in various solid geometries of practical importance.	Theoretical Lecture	Exams/Homeworks/Project	

7	Determine the appropriate transport phenomena for any process involving heat and mass transfer	Theoretical Lecture	Exams/Homeworks/Project
	111a55 (1a1151C).		

Weekly Detailed Course Content

Week	Content	Recommended	Time	
WCCK		Resource(s)	(Hours)	
1	Introduction and review of Heat Transfer	Textbook and Lecture	3	
-	Fundamentals	Notes	3	
2	Steady state heat conduction with internal heat	Textbook and Lecture	3	
	generation	Notes		
3	Extended surfaces (fins), optimum distribution of fin	Textbook and Lecture	3	
	material, fin efficiency, annular fins	Notes		
4	Unsteady State heat conduction	Textbook and Lecture	3	
		Notes		
	Radiant heat transfer, definitions of surface	Textbook and Lecture		
5	properties, Kirchhoff's Laws, Stefan Boltzmann	Notes	3	
	equation			
6	Gray bodies, view factor, energy exchange in gray	Textbook and Lecture	3	
	enclosures with and without absorbing gases	Notes	_	
_	Equations of motions of a compressible, viscous	Textbook and Lecture		
1	fluid; Navier-Stokes equation; significance of	Notes	3	
	Reynolds number			
0	Laminar boundary theory in incompressible fluid	Textbook and Lecture		
8	flow; flow over flat plate, separation; Von Karman	Notes	3	
	Momentum equation / Mildterm Exam	Toroth a share of Landaura		
9	Steady Laminar and Turbulent Heat Transfer in	Textbook and Lecture	3	
	External and Internal Flows	Notes		
10	Unsteady Laminar and Turbulent Forced Convection	Textbook and Lecture	2	
10	in Ducts and on Plates	Notes	3	
11	Laminar, forced and natural convection	Textbook and Lecture	3	
		Notes		
10	Incompressible turbulent flow; heat and mass transfer	Textbook and Lecture	2	
12	inrough a turbulent boundary layer; modified energy	Notes	3	
	Paymolda, Taylor and Martinelli analoguasi			
	applications to flow over a flat and down a duct	Taythook and Lastura		
13	turbulant D randtl number and limitations of the	Notes	3	
	analogues of heat and mass transfer	Notes		
		Textbook and Lecture		
14	J factors. Mass transfer in laminar and turbulent flow	Notes	3	
15	Final Exam			
15	Final Exam			
10			1	

COURSE INFORMATION

Sources

Course notes/textbooks	: Kays, "Convective heat and mass transfer", McGraw-Hill. Cebeci and Bradshaw, "Momentum transfer in boundary layers", Mc Graw-Hill Eckert and Drake, Jr, Analysis of heat and mass transfer- McGraw-Hill Schlichting, "Boundary layer theory", Mc Graw-Hill
Readings	: None
Supplemental readings	: None
References	: None

Evaluation System

Work Placement	Number	Percentage of Grade (%)		
Attendance				
Quizzes				
Homework	4	20		
Laboratory/Practice				
Report(s)				
Graduate Thesis/Project				
Seminar				
Presentation				
Projects	1	30		
Midterm exam(s)	1	20		
Others				
Final exam	1	30		
	Total	100		
	Percentage of semester work	70		
	Percentage of final exam	30		
	Total	100		

Workload Calculation

Activity	Number	Time (hours)	Total Workload (hours)
Course Hours	14	3	42
On-line Activity Hours	0	0	0
Individual study	16	3	48
Lab practice	0	0	0
Midterm exam(s)	1	3	3
Final exam	1	3	3
Homework	4	6	24
Presentation	2	3	6
Project	2	24	48
		Total	174
		ECTS Credit (Total/30)	6

COURSE INFORMATION

Contribution of Learning Outcomes to Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
L01	5	5	5	5	5	5	5	5	5
LO2	5	5	5	5	5	5	5	5	5
LO3	5	5	5	5	5	5	5	5	5
LO4	5	5	5	5	5	5	5	5	5
LO5	5	5	5	5	5	5	5	5	5
LO6	5	5	5	5	5	5	5	5	5
L07	5	5	5	5	5	5	5	5	5

Contribution Level: 1 Very low, 2 Low, 3 Medium, 4 High, 5 Very High