COURSE INFORMATION

Course Code	AAM 555	Course Name	Theory of Beams, Plates and Shells					
Type of Course	Level of Course	Semester	Language	Theory	Application (Practice)	Laboratory	Local Credits	ECTS
Elective	Graduate	-	English	3	0	0	3	6

Design	
Department	: Aerospace Engineering
Prerequisites/Requirements for Admission	: None
Mode of Delivery	: Face to Face
Course Coordinator	: Asst. Prof. Reza AGHAZADEH
Course Lecturer(s)	: Asst. Prof. Reza AGHAZADEH
Course Assistant(s)	:
Course Description/Aim	: Objective of this course is to give basic knowledge about the theories which are used to determine the displacement, strain and stress fields in beams, plates and shells. For this purpose, the differences between theory of elasticity and structural theories are pointed out. Formulation of structural theories by using equilibrium as well as energy (variational) methods is demonstrated. Some exact and approximate solution methods which are used in certain types of beams, plate and shell problems are introduced.
Course Contents	: Review of theory of elasticity, variational principles, classical (Euler- Bernoulli) beam theory, Timoshenko beam theory, introduction to theory of plates, bending of rectangle plates, laterally loaded rectangular plates, Navier solution, Levy solution, fundamental equations for circular plates, circular plates under symmetrical and asymmetrical loads, application of energy methods and numerical methods, vibrations of plates, introduction to thin elastic shell theory, membrane theory of shells and bending theory, cylindrical shells and shells in the form of a surface of revolution.
Recommended Optional Program Components	: None
Compulsory Attendance	: 70% attendance is mandatory.

<u>Course Learning Outcomes</u>

#	Learning outcome	Teaching Methods/Techniques	Assessment method(s)	
At the e	end of this course; students will be able to:			
	Calculate the problems of beams, plates and	Lecture, Case Study,		
1	shells with various boundary conditions and loads	Discussion, On-line Activity	Exam	
2	Apply the energy method to solve problems involving beams, plates and shells	Lecture, Case Study, Discussion, On-line Activity	Exam	
3	Use numerical methods for problems involving beams, plates and shells when exact solution is impossible or not effective	Lecture, Case Study, Discussion, On-line Activity	Exam	
4	Analyze using theory of bending of shells	Lecture, Case Study, Discussion, On-line Activity	Exam	

COURSE INFORMATION

Weekly Detailed Course Content

Week	Content	Recommended Resource (s)	Time (Hours)
1	Introduction, basic concepts in mechanics	Textbook/Lecture Notes	3
2	Review of Theory of Elasticity	Textbook/Lecture Notes	3
3	Variational principles and classical (Euler- Bernoulli) beam theory	Textbook/Lecture Notes	3
4	Timoshenko Beam Theory	Textbook/Lecture Notes	3
5	Classical (Kirchhoff) Plate Theory	Textbook/Lecture Notes	3
6	Circular plates under axisymmetric loads	Textbook/Lecture Notes	3
7	Buckling of plates (Using classical plate theory)	Textbook/Lecture Notes	3
8	Mindlin Plate Theory / Midterm Exam	Textbook/Lecture Notes	3
9	Direct use of variational methods in the solution of plate problems	Textbook/Lecture Notes	3
10	Vibrations of plates	Textbook/Lecture Notes	3
11	Mathematical basics for the study of shell theories	Textbook/Lecture Notes	3
12	Classical Theory of Shells	Textbook/Lecture Notes	3
13	Simplifications on the general theory	Textbook/Lecture Notes	3
14	Solutions to sample problems using simplified shell theories	Textbook/Lecture Notes	3
15	Final Exam	Textbook/Lecture Notes	3
16	Final Exam	Textbook/Lecture Notes	

Sources

Course Notes /	: None
Textbooks	· None
Supplement al Readings	 : "Stresses in Plates and Shells", Ansel C. Uğural, McGraw-Hill, 1999. "Solid Mechanics: A Variational Approach", Clive L. Dym and Irving H. Shames, McGraw-Hill, 1973.) "Theory of Plates and Shells", S. P. Timoshenko and S.W. Krieger, McGraw-Hill, 1959. "The behaviour of Thin Walled Structures: Beams, Plates and Shells", Jack R.Vinson, Kluwer Academic Publishers, 1989. "Beams, Plates and Shells", L. Hamilton Donnell, McGraw-Hill, 1976. "Mechanics of Laminated Composite Plates-Theory and Analysis", J.N. Reddy, CRC 1997. "Thin Elastic Shells", H. Krauss, Wiley, 1967.

COURSE INFORMATION

Evaluation System

Work Placement	Number	Percentage of Grade (%)		
Attendance				
Quizzes				
Homework	3	20		
Presentation				
Laboratory/Practice				
Report(s)				
Graduate Thesis/Project				
Seminar				
Projects				
Midterm exam(s)	1	35		
Others				
Final exam	1	45		
	Total	100		
	55			
	Percentage of final exam	45		
	Total	100		

Workload Calculation

Activity	Number	Time (hours)	Total Workload (hours)
Course Hours	14	3	42
On-line Activity Hours			
Individual study	14	7	98
Midterm exam(s)	1	4	4
Final exam	1	4	4
Homework	3	10	30
Presentation			
Project			
Application (Practice)			
Laboratory			
		Total	178
		ECTS Credit (Total/30)	6

Contribution of Learning Outcomes to Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
L01	5	5	2	4	4	3	2	2	3
LO2	5	5	2	4	4	3	2	2	3
LO3	5	5	2	4	4	3	2	2	3
LO4	5	5	2	4	4	3	2	2	3

Contribution Level: 1: "Very low", 2: "Low", 3: "Medium", 4: "High", 5: "Very High" **LO:** Learning Outcome of the Course

PO: Program Outcome