COURSE INFORMATION

Course Code	AAM 557	Course Name	Contemporary Topics in Materials Technology					
Type of Course	Level of Course	Semester	Language	Theory	Application (Practice)	Laboratory	Local Credits	ECTS
Elective	Graduate	-	English	3	0	0	3	6

Department	: Aerospace Engineering
Prerequisites/Requirements	: Materials Science I (ME 203), Materials Science II (ME 440) (or
for Admission	equivalent)
Mode of Delivery	: Face to Face (with 15% online)
Course Coordinator	: Assoc. Prof. Mecit Yaman
Course Lecturer(s)	: Assoc. Prof. Mecit Yaman
Course Assistant(s)	
	: This course reviews four material types (metals, ceramics, polymers, composites)
Course Description / Aim	in the light of processing/ structure/ properties/ performance approach. Building on
Course Description/Ann	this central idea, the aim is to survey recent/current materials technology literature.
	The course covers functional as well as structural materials.
	: An overview of ceramics, polymers, composites, as well as more advanced
	nano, bio- and smart materials. Overview of corrosive, electrical, optical,
Course Contents	thermal, and magnetic properties of material. Environmental and societal
Course Contents	issues regarding materials. Selected relevant topics from current literature and
	scientific popular media including original research articles from Nature,
	Nature Materials and The Economist.
Recommended Optional	
Program Components	
Compulsory Attendance	: 70%

Course Learning Outcomes

#	Learning outcome	Teaching	Assessment method(s)	
#		Methods/Techniques		
At the	end of this course; students will be able to:			
	Classify materials as metals, ceramics,			
	polymers, and composites and describe	Theoretical Lecture	Seminar/ Exam	
1	their properties with respect to their	Reading from literature		
	microstructure, select suitable materials	Reading from incratare		
	for a given task/application.			
	Apply the central dogma of materials			
2	science (processing, structure, properties,	Theoretical Lecture,	Seminar/ Exam	
4	and performance) to current materials	Reading from literature		
	technology examples from the literature.			
	Discuss the contemporary economic,	Theoretical Lacture		
3	environmental, and societal issues around	Panding from literature	Seminar/ Exam	
	materials.	Reading from merature		

COURSE INFORMATION

Weekly Detailed Course Content

Week	Content	Recommended Resource(s)	Time (Hours)
1	Metals and their applications	Textbook/ Course website	3
2	Literature study: Metals technology	Textbook/ Course website	3
3	Ceramics and their applications	Textbook/ Course website	3
4	Literature study: Ceramics technology	Textbook/ Course website	3
5	Polymers and their applications	Textbook/ Course website	3
6	Literature study: Polymers technology	Textbook/ Course website	3
7	Composites and their applications	Textbook/ Course website	3
8	Literature study: Composites technology / Midterm Exam / Seminar	Textbook/ Course website	3
9	Electrical/magnetic/optical properties of materials	Textbook/ Course website	3
10	Literature study: electromagnetic properties	Textbook/ Course website	3
11	Thermal properties of materials	Textbook/ Course website	3
12	Literature study: thermal properties	Textbook/ Course website	3
13	Nano, bio, smart materials	Textbook/ Course website	3
14	Environmental and societal issues reg. materials	Textbook/ Course website	3
15	Final Exam		
16	Final Exam		

Sources

Course Notes / Textbooks	 William D. Callister Materials Science and Engineering An Introduction-Wiley 10th edition (2018). William Smith, Javed Hashemi - Foundations of Materials Science and Engineering-McGraw-Hill Education (2019). Adrian P. Mouritz - Introduction to Aerospace Materials (2012).
Supplemental	 Mark Miodownik - Stuff Matters: Exploring the Marvelous Materials That Shape
Readings	Our Man-Made World-Houghton Mifflin Harcourt (2014). Nature, Nature Materials, The Economist. https://sites.google.com/site/topicsinengineering/topics.

Evaluation System

Work Placement	Number	Percentage of Grade (%)	
Attendance	14	25	
Quizzes			
Homework			
Presentation			
Laboratory/Practice			
Report(s)			
Graduate Thesis/Project			
Seminar	1	25	
Projects			
Midterm exam(s)			
Others			
Final exam	1	50	
	Total	100	
	50		
	50		
	Total	100	

COURSE INFORMATION

Workload Calculation

Course Hours	14	3	42
Midterm exam/ Seminar	1	15	15
Individual study	14	8	112
Final exam	1	15	15
Homework			
Presentation			
Quiz			
Total			184
		ECTS Credit (Total/30)	6

Contribution of Learning Outcomes to Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
L01	5	3	5	3	5	3	3	3	5
LO2	5	5	5	5	5	5	3	5	5
LO3	5	5	5	5	5	5	5	5	5

Contribution Level : 1: "Very low", 2: "Low", 3: "Medium", 4: "High", 5: "Very High" LO: Learning Outcome of the Course PO: Program Outcome