COURSE INFORMATION

Course Code	AAM 561	Course Name	Flow Simulations Using Particles					
Type of Course	Level of Course	Semester	Language	Theory	Application (Practice)	Laboratory	Local Credits	ECTS
Elective	Graduate	-	English	3	0	0	3	6

Department	: Aerospace Engineering
Prerequisites/Requirements for Admission	: Basic computer programming course (C, Fortran, Matlab, Python etc.)
Mode of Delivery	: 100% Face to Face
Course Coordinator	: Prof. Dr. Nevsan ŞENGİL
Course Lecturer(s)	: Prof. Dr. Nevsan ŞENGİL
Course Assistant(s)	
Course Description/Aim	: This course aims to teach the basic principles of fluid and plasma simulations using particles.
Course Contents	: Molecular Dynamics, Direct Simulation Monte Carlo, Lattice Boltzmann Method and Particle-in-Cell Method
Recommended Optional Program Components	: N/A
Compulsory Attendance	: 70%

Course Learning Outcomes

#	Learning outcome	Teaching	Assessment method(s)
#		Methods/Techniques	
At the	end of this course; students will be able to:		
1	Simulate fluid flows with Molecular	Theoretical Lecture,	Exams
1	Dynamics Method.	Solving Exercises	
2	Simulate rarefied gas flows with Direct	Theoretical Lecture,	Exams
4	Simulation Monte Carlo Method.	Solving Exercises	
3	Simulate incompressible fluid flows with	Theoretical Lecture,	Exams
3	Lattice Boltzmann Method.	Solving Exercises	
4	Simulate plasma flows with Particle-in-	Theoretical Lecture,	Exams
4	Cell Method.	Solving Exercises	
5	Use MATLAB efficiently to simulate flows	Theoretical Lecture,	Exams
5	and parallelize the solvers.	Solving Exercises	

Weekly Detailed Course Content

Week	Content	Recommended Resource(s)	Time (Hours)
1	Overview of Molecular Dynamic method	Textbook/ Lecture Notes	3
2	Potentials and equations of motion used in MD method	Textbook/ Lecture Notes	3
3	Calculation of macro properties	Textbook/ Lecture Notes	3
4	Optimization techniques of MD method	Textbook/ Lecture Notes	3
5	Rarefied gas dynamics and direct simulation Monte Carlo method	Textbook/ Lecture Notes	3
6	Molecule-molecule and molecule-surface collisions	Textbook/ Lecture Notes	3

COURSE INFORMATION

7	Stream boundary conditions	Textbook/ Lecture Notes	3
8	Calculation of macro properties/Midterm Exam	Textbook/ Lecture Notes	3
9	Introduction to Lattice Boltzmann method	Textbook/ Lecture Notes	3
10	Implementation of LBM to incompressible flows	Textbook/ Lecture Notes	3
11	Basics of plasmas and electromagnetic fields	Textbook/ Lecture Notes	3
12	Overview of Particle-in-Cell method	Textbook/ Lecture Notes	3
13	Electrostatic Model	Textbook/ Lecture Notes	3
14	Fast solution of Poisson's equations	Textbook/ Lecture Notes	3
15	Final Exam	_	_
16	Final Exam	_	-

Sources

Course Notes / Textbooks	Computer Simulation of Liquids, Allen, M. and Tildesley, D., 1994, Clarendon Press, Oxford. Computer Simulation Using Particles, Hockney, R.W. and Eastwood, J.W., 1988, Institute of Physics Publishing, Bristol, and Philadelphia. Molecular Gas Dynamics and the Direct Simulation Gas Flows, Bird, G.A., 1994, Clarendon Press, Oxford. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Succi, S., 2004, Clarendon Press, Oxford. Plasma Physics via Computer Simulation, Birdsall, C.K. and Langdon, A.B., 1981, McGraw-Hill, NY.
Supplementary Boodings	Plasma Simulations by Example, Lubos Brieda, 2019, CRC Press.

Evaluation System

Work Placement	Number	Percentage of Grade (%)
Quizzes	8	30
Homework		
Laboratory/Practice		
Report(s)		
Graduate Thesis/Project		
Seminar		
Projects		
Midterm exam(s)	1	30
Others		
Final exam	1	40
	Total	100
	Percentage of semester work	60
	Percentage of final exam	40
	Total	100

Workload Calculation

Activity	Number	Time (hours)	Total Workload (hours)
Course Hours	14	3	42
On-line Activity Hours			
Individual study	16	8	128
Midterm exam(s)	1	2	2
Final exam	1	3	3

COURSE INFORMATION

Homework		
Presentation		
Project		
	Total	175
	ECTS Credit (Total/30)	6

Contribution of Learning Outcomes to Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
L01	2	3	2	4	5	5	5	5	4
LO2	1	4	5	4	5	5	5	2	4
LO3	2	3	5	2	5	5	5	3	5
LO4	5	5	5	5	5	5	5	5	3
LO5	3	3	4	2	5	5	5	2	1

Contribution Level: 1: "Very low", 2: "Low", 3: "Medium", 4: "High", 5: "Very High" **LO:** Learning Outcome of the Course

PO: Program Outcome